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1 Introduction
These notes derive from a course on the semantics of type theory that I have
given at TU Darmstadt in 2020.
My objective with this course was to give a reasonably complete introduction to
the so-called standard model of homotopy type theory in simplicial sets, which
would be accessible to students with limited familiarity with category theory,
and no prior knowledge of algebraic topologic or homotopical algebra.
The construction of the model of type theory in simplicial sets developed in
these notes entirely bypasses the question of the existence of the corresponding
model structure, and avoids the need to resort to geometric realisation for the
definition of weak equivalences.
In fact, the notion of weak equivalence is avoided altogether, and replaced by
that of equivalence of fibrations, which is more well-behaved and easier to de-
fine and to deal with type-theoretically.
The first model of type theory featuring a genuinely intensional equality type
and (in current terminology) a univalent universe was the groupoid model of
Hofmann and Streicher [12]. The idea was later improved to a model where
types are families of ∞-groupoids, realised as Kan fibrations over simplicial
sets [13], in a ZFC metatheory plus enough inaccessible cardinals.
Soon after, in relation to questions about the then conjectured homotopy canon-
icity property of homotopy type theory, the problem of developing a fully con-
structive model was raised. That lead to the development of the first model in
cubical sets [3], followed by many others [6, 1].
Meanwhile, the question of whether the properties of the existing simplicial
model could be proved constructively was settled negatively by [4]. Never-
theless, constructive alternatives to the simplicial model have since been devel-
oped.
The results in [9] imply the existence of a model with Σ, Π and equality types
using an algebraic notion of Kan fibration. However, it is not known how to
build a univalent universe in such a model.
On the other side of the spectrum, the models in [8, 10] are based on the stan-
dard notion of Kan fibration (and reduce to the standard model of [13] in the
presence of excluded middle) but lack stability of Π-types.
I will not consider the issue of constructivity in these notes, but I will never-
theless make use of some of the innovations introduced in its pursuit, such
as the notion of strong homotopy equivalence (definition 5.19) — taken from [9]
— and the technique of using the equivalence extension property for proving fi-
brancy of the universe — introduced by [6] in the development of a cubical
model, and later repurposed by [15] to more general models including simpli-
cial ones.
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Apart from repackaging existing constructions in a more elementary format,
I make no originality claims in these notes. In order to follow the construc-
tion, a basic understanding of elementary category theory is required, but not
much more than the definition of category, functor, natural transformation, and
limit.
Presheaves play a fundamental role in these notes, for a couple of reasons. First,
it is very fruitful to think of the structure of a model of type theory in terms
of presheaves and operations between them. This is in essence a categorical
interpretation of the idea of logical framework. See for example [2, 5, 16] for
applications of these ideas.
Secondly, the main objective of these notes is to construct a model of homotopy
type theory in simplicial sets, which are themselves a special kind of presheaves.
Some (though not all) of the type-theoretic structures in simplicial sets are in
fact instances of their more general counterparts in presheaves.
For those reasons, the first part of these notes (section 2) is dedicated to recall-
ing some basic facts about presheaves, including a general version of the nerve-
realisation adjunction, used multiple times in the following, and the equivalence
between presheaves over a fixed presheaf X and presheaves on the category of
elements of X , which is exploited throughout the rest of the notes.
In section 3, I will introduce the main notion of model of type theory which we
will be using, namely that of categories with families (cwf s). Cwfs by themselves
only model the basic rules of substitutions of types and terms, and therefore
we need further structures to model the various type formers, mostly Σ, Π and
equality types. These are introduced in section 4.
Finally, section 5 is dedicated to the main construction: that of the simplicial
model of type theory. This is the most technically challenging section, since
certain facts, such as the equivalence extension property or closure of Kan fi-
brations under Π-types, are essentially impossible to establish without ade-
quate preparation in the combinatorics of anodyne extensions (cf. proposi-
tion 5.16).
I am indebted to the participants of the Budapest type theory seminar for their
help and suggestions in the development of the program for this course. Special
thanks go to Christian Sattler, who has helped me gain a better understanding
of some of the ideas in these notes, and has suggested various improvements to
the presentation. I am also grateful to the students of the course, in particular
Amjad Saef, for reporting several mistakes and typos in earlier drafts.

2 Preliminaries
If A is a category, we will denote the category of presheaves on A by Â. The
category Â is complete and cocomplete, with limits and colimits computed
pointwise. The Yoneda embedding A → Â will be denoted by A[−]. Given
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a presheaf X on A, an element x ∈ X(y), and a morphism f : a → b in A, we
will use the notation xf forX(f)(x), assuming the functorX is clear. The post-
fix notation has the advantage that functoriality of X can be written simply as
(xf)g = x(f ◦ g).
Let us recall the Yoneda lemma.
Lemma 2.1. For all presheaves X on A, and a ∈ A, there is a natural bijection

Â(A[a], X) ∼= X(a).

The Yoneda lemma says that the representable functor A[a] plays the role of
a “walking element” of “shape” a. It is essentially a single abstract element
of a generic functor, equipped with the minimal structure needed to make it
into a presheaf. We get actual elements of presheaves by mapping out of the
representable.
For example, consider the category of directed graphs, which is easily seen to
be equivalent to the presheaf category on A = 0

s

⇒
t

1. Then the representable
A[0] is a graph consisting of a single vertex, the “walking vertex”, while A[1]
is two vertices and an edge between them, the “walking edge”. The Yoneda
lemma says that vertices of a graph can be regarded as maps from the walking
vertex, and similarly edges are maps from the walking edge.
In the following, we will assume that A is small.
If X is a presheaf on A, we will denote by A/X the category of elements of X .
A concise definition is that A/X is the full subcategory of Â/X consisting of
maps from a representable presheaf to X . The terminology is motivated by
the Yoneda lemma, since elements of a functor are the same as maps from a
representable. Explicitly, the objects ofA/X are pairs (a, x), where a is an object
of A, and x ∈ X(a) is an element of X . Morphisms (a, x)→ (b, y) are given by
morphisms f ∈ A(a, b) such that x = yf .
Lemma 2.2. Given presheaves X and Y ,

lim
(a,x)∈A/X

Y (a) ∼= Â(X,Y ).

This has a simple, but important, consequence.
Lemma 2.3. Every presheaf is a canonical colimit of representables. Explicitly, if X
is any presheaf on A, we have:

X ∼= colim
(a,x)∈A/X

A[a].

Proof. Let Y be an arbitrary presheaf. Then

Â(X,Y ) ∼= lim
(a,x)∈A/X

Y (a) ∼= lim
(a,x)∈A/X

Â(A[a], Y ),
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which shows thatX satisfies the universal property of the required colimit.

In the graph example, this specialises to the statement that every graph can be
obtained as a colimit of vertices and edges, glued according to the combinatorial
data of the graph itself.
The category of presheaves Â can be thought of as the completion of A under
small colimits. We will now make this statement precise.
Let i : A → E be a functor to a category E . Define a functor Ni : E → Â, called
the nerve functor associated to i, as follows:

Ni(Y )(a) = E(i(a), Y ).

Lemma 2.4. Let E be a cocomplete category, and i : A → E a functor. Then the functor
Ni defined above has a left adjoint τi, called the realisation functor associated to i.
The functor τi preserves colimits and τi(A[a]) ∼= i(a) and is uniquely determined up
to natural isomorphisms by these two properties.

Proof. Suppose first that we have such a functor τi. Then

τi(X) ∼= τi colim
(a,x)∈A/X

A[a] ∼= colim
(a,x)∈A/X

τi(A[a]) ∼= colim
(a,x)∈A/X

i(a),

so τi is uniquely determined up to natural isomorphism. To show existence, we
can take this as a definition of τi. The following calculation shows that τi is left
adjoint to Ni:

E(τi(X), Y ) = E
(

colim
(a,x)∈A/X

i(a), Y
)

∼= lim
(a,x)∈A/X

E(i(a), Y )

∼= Â(X,Ni(Y )).

In particular, τi preserves colimits, and furthermore, for all objects a ∈ A, Y ∈ E ,
we have a natural isomorphism,

E(τi(A[a]), Y ) ∼= Â(A[a], Ni(Y )) ∼= E(i(a), Y ),

and it follows from the Yoneda lemma that τi(A[a]) ∼= i(a).

Note that if i is fully faithful, then Ni(i(a)) ∼= A[a], since

Ni(i(a))(a′) ∼= E(i(a′), i(a)) ∼= A(a′, a) = A[a](a′).

Lemma 2.5. There is an equivalence of categories:

Â/X ∼= Â/X.
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Proof. Let i : A/X → Â/X be the inclusion. Since Â/X is cocomplete, this de-
termines a nerve-realisation adjunction. It remains to show that this adjunction
is an equivalence. First of all, if p : Y → X is an object of Â/X , we can write Y
as a colimit of representables, and this determines an isomorphism

(Y, p) ∼= colim
(a,y)∈A/Y

(A[a], py),

where py : A[a] → X is the component at y of the cocone corresponding to
p. Furthermore, since i is fully faithful, Ni(A[a], x) = (A/X)[a, x] for all x ∈
X(a) ∼= A[a]→ X .
Therefore, it is enough to show that Ni preserves colimits. If (a, x) ∈ A/X is
fixed, then

Ni(Y, p)(a, x) ∼= {y ∈ Y (a) | p(y) = x} ∼= x∗(Y (a), p)

where x∗ : Set/X(a) → Set is the functor that returns the fibre over x. Since
p∗ has a right adjoint, it preserves colimits. It follows that the functor (Y, p) 7→
Ni(Y, p)(a, x) preserves colimits, and therefore Ni does, as required.

3 Categories with families
Definition 3.1. A category with families (cwf) [7] is given by:

• A category C with a distinguished terminal object. Objects of C are called
contexts.

• A presheaf Ty on C. Elements of Ty are called types.
• A presheaf Tm over Ty. Elements of Tm are called terms.
• For all types A ∈ Ty(Γ), a representative of the functor C/Γ → Set given

by (∆, σ) 7→ Tm∆(Aσ).
The last point implicitly says that the functor is representable, and furthermore
we are given a specified representative as part of the structure of a cwf. More
explicitly, this means that for any type A ∈ Ty(Γ), there is a context Γ.A, called
the context extension of Γ by A, and a morphism pA : Γ.A → Γ, satisfying the
following property, which we will refer to as the universal property of context
extension: to give a morphism ∆→ Γ.A is the same as to give

• a morphism σ : ∆→ Γ;
• a term t : Tm∆(Aσ).

Morphisms of the form pA : Γ.A→ Γ for some typeA ∈ Ty(Γ) are called display
maps.
Note that context extension can be regarded as a functor ext : C/Ty → C[1],
where C[1] is the category of arrows of C. For readers familiar with the notion
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of Grothendieck fibration, it may be useful to observe that the universal prop-
erty above implies that the functor ext is Cartesian, i.e. it preserves Cartesian
morphisms.
When working with cwfs, we will often implictly identify a term a ∈ TmΓ(A)
with the corresponding morphism Γ → Γ.A given by the definition of context
extension. For example, if B ∈ Ty(Γ.A), we write Ba ∈ Ty(Γ) for the type
obtained using functoriality of Ty on the morphism corresponding to the term
a. We can think of the type Ba as the result of substituting a into B.
We will also liberally omit substitution along weakening morphisms, i.e. com-
positions of display maps. So, for example, if A ∈ Ty(Γ), we will simply write
A instead of ApA for the corresponding type in Ty(Γ.A). Applying the univer-
sal property of context extension to the identity morphism Γ.A→ Γ.A yields a
term vA ∈ TmΓ.A(A), which we will refer to as the variable of type A.
Lemma 3.2. For any typeA ∈ Ty(Γ), and morphismσ ∈ C(∆,Γ), there is a morphism
σ+ ∈ C(∆.Aσ,Γ.A) that fits into a pullback square:

∆.Aσ σ+
//

pAσ

��

Γ.A
pA

��
∆

σ
// Γ.

Proof. Let Θ be an arbitrary context. Then

C(Θ,∆.Aσ) ∼=
∐

τ∈C(Θ,∆)

C/∆((Θ, τ), (∆.Aσ, pAσ))

∼=
∐

τ∈C(Θ,∆)

TmΘ(Aστ)

∼=
∐

τ∈C(Θ,∆)

C/Γ((Θ, στ), (Γ.A, pA))

∼= {(τ, ψ) | τ ∈ C(Θ,∆), ψ ∈ C(Θ,Γ.A), pAψ = στ},

and the last set in the chain of isomorphisms is simply the set of cones for the
above pullback diagram. Since naturality is clear, this shows that ∆.Aσ sat-
isfies the universal property of the pullback, and also defines the map σ+ as
a component of the limit cone. To conclude, it remains to show that pAσ is
indeed the other component of the limit cone, which can be verified explic-
itly by tracing through the chain of isomorphisms starting with the identity
∆.Aσ → ∆.Aσ.

3.1 Sets
The standard example is the category of sets. In the following, we will make
liberal use of universes. We consider a universe V fixed, and call a set V-small if
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it is contained in V . We can now define a cwf structure on the category of sets
as follows:

• the base category is Set, with an arbitrary choice of a one-element set as a
terminal object;

• for a set Γ, types over Γ are families ofV-small sets indexed over Γ, i.e. func-
tions Γ→ V ;

• for a set Γ, and a type A : Γ → V , terms of A are sections, i.e. families
(ax)x∈Γ, where ax ∈ A(x).

Context extension is formed by taking pairs: Γ.A is the set of pairs (x, a), where
x ∈ Γ and a ∈ A(x). The universal property is immediate to verify.

3.2 Syntactic models
The definition of cwf is simply a more categorical formulation of the structural
rules of type theory. For this reason, assuming a precisely defined syntax of
type theory, one should get a corresponding syntactic model by taking contexts,
types and terms to be their syntactic counterparts. Morphisms of contexts are
given by tuples of terms. The category structure on context, as well as the
presheaf structures on types and terms, are defined using substitution.
The verification that the above construction indeed forms a cwf depends on the
details of the definition of the syntax, which can get pretty tedious. For this
reason, we will not be attempting to make any of this precise. In some cases,
one can get around these difficulties using a more semantic approach to syn-
tax. Namely, one can define a category of cwf equipped with appropriate type-
theoretic structure, and define the corresponding syntactic model by taking an
initial object in this category.
In the following sections, we will be limiting ourselves to exploring how one
can define this type-theoretic structure precisely, but we will avoid thinking
about morphisms between “structured” cwfs, which means that technically we
will not be able to speak of the syntactic model as an initial cwf with structure.
Nevertheless, at least at an intuitive level, it is useful to keep syntactic models
in mind, as they are bridges between the semantic and syntactic sides of type
theory. For more details on how to define a syntactic model, [11] is a good
reference.

3.3 Groupoids
Recall that a groupoid is a category where all the morphisms are invertible. As
before, consider a universe V of sets fixed. Denote by Gpd the category of small
groupoids (and functors), and by Gpd(V) the full subcategory of groupoids
whose set of arrows is V-small (the set of objects is then automatically V-small).
Following the same idea as the cwf of sets, one can define a cwf of categories as
follows:
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• the base category is Gpd, the category of small groupoids;
• for a groupoid Γ, types over Γ are families of V-small groupoids over Γ,

i.e. functors Γ→ Gpd(V).
We could now define terms directly and prove that with these definitions Gpd
is a cwf. In fact, it is a useful exercise to do so, and the reader is invited to try
it before reading the construction below. However, we take this opportunity to
show a more general technique to get a correct definition of terms given con-
texts, types and context extension.
So far, we have contexts and types, so let us define context extension. Given a
type A : Γ → Gpd(V), we can consider a generalisation of the category of ele-
ments of a presheaf that we have been using so far. If f : Γ(x, y) is a morphism
in Γ, let f∗ : A(x) → A(y) be the functor given by functoriality of A. Note that
there are two levels of functoriality at play here, which can get confusing: since
A is a functor, it transforms morphisms in Γ into morphisms in Gpd(V), and the
latter are themselves functors between groupoids.
Now, define a category Γ.A as follows:

• objects of Γ.A are pairs (x, a), where x is an object of Γ, and a is an object
of A(x);

• a morphism (x, a)→ (y, b) is given by a pair (f, g), where f ∈ Γ(x, y), and
g ∈ A(y)(f∗(a), b).

Composition and identities are defined in the obvious ways. Note that if A(x)
happens to be a discrete groupoid for all x, then Γ.A coincides with the cate-
gory of elements of A, regarded as a presheaf on Γ (since Γ is a groupoid, con-
travariance does not matter). In fact, in this case the morphism g of a pair (f, g)
is forced to be an identity, recovering the elementary definition of category of
elements precisely.
There is an obvious functor pA : Γ.A→ Γ, and it is not hard to verify that all this
data assembles into a functor ext : Gpd/Ty → Gpd[1]. For Gpd to be a cwf such
that ext is the context extension functor, we must have, in particular:

TmΓ(A) ∼= Gpd/Γ((Γ, id), ext(Γ, A))

This suggests that we can take the above equation as the definition of Tm. Note
that the right hand side is the set of sections of pA, i.e. the set of functors s : Γ→
Γ.A such that pA ◦ s = id.
To prove that this definition of Tm possesses the correct universal property, we
have to show, that for all groupoids ∆, and functors σ : ∆→ Γ, there is a natural
isomorphism

Gpd/∆((∆, id), (∆.Aσ, pAσ)) ∼= Gpd/Γ((∆, σ), (Γ.A, pA)).

This follows easily once we prove that lemma 3.2 holds in Gpd.
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Lemma 3.3. The following square of groupoids and functors

∆.Aσ //

��

Γ.A

��
∆ // Γ

is a pullback.

Proof. This can be verified explicitly expanding the definition of context exten-
sion.

It is also possible to extend this cwf structure to a full-blown model of type
theory, in a sense that will be made precise later. This results in the groupoid
model [12], which was the first example of a model of type theory with a gen-
uinely intensional equality type structure (cf. section 4.3.2) and a univalent
universe.

3.4 Presheaf models
Let I be a small category. We will equip the corresponding presheaf category Î
with a cwf structure. Again, let V be a universe of sets. For a presheaf Γ, a type
over Γ is defined to be a presheaf on I/Γ whose values are all V-small sets. The
functorial action is as follows: given a morphism σ : ∆→ Γ, and a type A over
Γ, the type Aσ is given as the composition

I/∆→ I/Γ A−→ V,

where the first map is the functor that sends a pair (a, x) to (a, σ(x)).
Given a context Γ and type A, let pA : Γ.A → Γ be the object of Î/Γ corre-
sponding to A via the equivalence of lemma 2.5. We can give a more explicit
description of Γ.A:
Lemma 3.4. For all objects i ∈ I, we have

(Γ.A)(i) ∼=
∐

x∈Γ(i)

A(i, x),

and the morphism Γ.A→ Γ corresponds to the first projection via the isomorphism.

Proof. It is enough to show the claim when A is a representable, in which case
it follows immediately from the definitions.

Just like the groupoid example, we have a definition of contexts, types and con-
text extension, which means that the rest of the cwf structure on Î follows once
we prove that lemma 3.2 holds in this category.
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Lemma 3.5. Given a context morphism σ : ∆ → Γ and a type A on Γ, the following
diagram of presheaves and natural transformations

∆.Aσ //

��

Γ.A

��
∆ // Γ

is a pullback.

Proof. This can be proved via an explicit calculation using lemma 3.4, which we
leave to the reader. Here we give a more abstract proof using the uniqueness
part of lemma 2.4.

Consider the functor Î/Γ → Î/∆ given by precomposition with σ, so that by
definition Aσ is the image of A through this functor. It is easy to show directly
that this functor preserves colimits. Denote by σ∗ the functor Î/Γ→ Î/∆ given
by pullback along σ. Since σ∗ has a right adjoint, it also preserves colimits.
Therefore, it is again enough to show the claim whenA is representable, where
the verification is immediate.

4 Type formers
The structure of a cwf can only model the so-called structural rules of type the-
ory, i.e. those regarding substitution of types and terms. All the other rules have
to be added as extra structure on a cwf. The approach taken in these notes is
standard, and a similar presentation can be found in [11].

4.1 Σ-types
Let us begin with Σ-types. We can take the rules for Σ-types in the syntax and
translate them directly into an algebraic structure on a cwf, by giving the fol-
lowing preliminary definition.
Definition 4.1. An unstable Σ-type structure on a cwf C is given by:

• for all contexts Γ ∈ C and typesA ∈ Ty(Γ),B ∈ Ty(Γ.A), a type ΣΓ(A,B) ∈
Ty(Γ);

• an isomorphism

TmΓ(ΣΓ(A,B)) ∼=
∐

a∈TmΓ(A)

TmΓ(Ba).

The isomorphism of definition 4.1 can be understood in terms of the syntactic
definition of Σ-types in terms of pairing and projections. Going left to right
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in the isomorphism corresponds to taking the two projections, while going the
other way corresponds to forming a pair given two terms of the correct types.
The fact that these two maps are inverses to each other correspond to the β and
η rules.
The reason for the qualifier unstable is that such a structure is not well-behaved
enough to model the Σ-types of the syntax. What is missing is something de-
scribing the behaviour of Σ-types over varying contexts.
For example, if σ ∈ C(∆,Γ) is any context morphism, and A,B types as in
definition 4.1, there is a priori no relation between the types Σ(A,B)σ and
Σ(Aσ,Bσ+). However, syntactically there is no difference between the two, so
the semantics should reflect that. Similar considerations apply to the rest of the
structure.
To organise these stability requirements in a way that makes it easy to state them
and reason about them, we are going to restructure definition 4.1 into a more
principled formulation. First, define a presheaf Ty(2) on C as follows:

Ty(2)(Γ) =
∐

A∈Ty(Γ)

Ty(Γ.A).

An element of Ty(2)(Γ) is a pair of types A,B, with B depending on A. The ac-
tion of a morphismσ of C on a pair (A,B) is given by (A,B)σ = (Aσ,Bσ+).
Correspondingly, we have a presheaf Tm(2) on C/Ty(2) defined by:

Tm(2)
Γ (A,B) =

∐
a∈TmΓ(A)

TmΓ(Ba),

so that an element of Tm(2)
Γ (A,B) is a pair of terms a, b of types A and Ba re-

spectively. By applying the universal property of context extension twice, we
get a natural isomorphism

Tm(2)
∆ (Aσ,Bσ+) ∼= C/Γ((∆, σ), (Γ.A.B, pApB)).

Definition 4.1 can now be read in terms of Ty(2), and it consists of
• a family of maps ΣΓ : Ty(2)(Γ)→ Ty(Γ), indexed over all contexts Γ;
• a family of isomorphisms TmΓ(Σ(A,B)) ∼= Tm(2)

Γ (A,B), indexed over
Γ, A,B.

The above formulation makes it clear that the definition is missing naturality.
We can therefore strengthen it in the obvious way and obtain a definition of
stable Σ-types.
Definition 4.2. A (stable) Σ-type structure on a cwf C is given by:

• a natural transformation Σ: Ty(2) → Ty;
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• a natural isomorphism Tm ◦ Σ ∼= Tm(2).
Note that in the above definition we have abused notation, and denoted again
with Σ the functor C/Ty(2) → C/Ty induced by the natural transformation
Σ.
We can give a number of equivalent characterisations of a Σ-type structure.
First, let us recall the notion of orthogonality of morphisms in a category.
Definition 4.3. Let f : A → B and g : X → Y morphisms in a category A. We
say that f is left orthogonal to g, or equivalently that g is right orthogonal to f , if
for all commutative squares

A
u //

f

��

X

g

��
B

v
// Y,

there exists a unique diagonal lift, i.e. a morphism ` : B → X that makes both
triangles commute:

A
u //

f

��

X

g

��
B

v
//

`

>>

Y.

Proposition 4.4. Let Σ: Ty(2) → Ty be a natural transformation, and

i : Γ.A.B → Γ.Σ(A,B)

a morphism over Γ, natural in (Γ, A,B) ∈ C/Ty(2). The following are equivalent:

(i) i is an isomorphism;

(ii) the map Tm(2)
Γ (A,B)→ TmΓ(Σ(A,B)) induced by i via the universal property

of context extension is an isomorphism;

(iii) for all (∆, σ) ∈ C/Γ, composition with i induces an isomorphism

C/Γ(Γ.Σ(A,B),∆) ∼= C/Γ.A(Γ.A.B,∆.Aσ);

(iv) for all types X ∈ Ty(Γ.Σ(A,B)), the map

i∗ : TmΓ.Σ(A,B)(X)→ TmΓ.A.B(Xi)

is an isomorphism;

(v) i is left orthogonal to all display maps.
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Proof. (i) ↔ (ii) Since i is a morphism over Γ, i is an isomorphism if and only
if, for all (∆, σ) ∈ C/Γ, it induces an isomorphism

C/Γ(∆,Γ.A.B) ∼= C/Γ(∆,Γ.Σ(A,B)).

Now, the latter condition clearly implies (ii) using the universal property of
context extension. Conversely, assume (ii) holds. Then in particular

Tm(2)
∆ (Aσ,Bσ+) ∼= Tm∆(Σ(Aσ,Bσ+)),

hence, by naturality of Σ,

Tm(2)
∆ (Aσ,Bσ+) ∼= Tm∆(Σ(A,B)σ),

and applying the universal property of context extension yields the desired iso-
morphism.
(i) ↔ (iii) By Yoneda, i is an isomorphism if and only if it induces an isomor-
phism

C/Γ(Γ.Σ(A,B),∆) ∼= C/Γ(Γ.A.B,∆),

and the right hand side is isomorphic to C/Γ.A(Γ.A.B,∆.Aσ) by lemma 3.2.
(i)→ (iv) Obvious.
(iv) → (v) Let pX : ∆.X → ∆ be a display map, and suppose given a commu-
tative square

Γ.A.B

i

��

u // ∆.X

pX

��
Γ.Σ(A,B)

v
// ∆.

By lemma 3.2, we can factor this square as follows:

Γ.A.B

i

��

u′ // Γ.Σ(A,B).Xv v+
//

��

∆.X

pX

��
Γ.Σ(A,B) =

// Γ.Σ(A,B)
v

// ∆,

where the right hand square is a pullback. Now, giving a lift of the original
square is the same as giving a lift for the left hand square. By the universal
property of context extension, giving such a lift is equivalent to giving a term in
TmΓ(A,B)(Xv) which is mapped to the term corresponding to u′ by i∗. Since i∗
is assumed to be an isomorphism, there is exactly one such term, which means
that there is exactly one lift.
(v) → (i) Since right orthogonality classes are closed under composition (as it
is immediate to verify), we know that i is left orthogonal to all weakenings. In
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particular, in the diagram

Γ.A.B = //

i

��

Γ.A.B

��
Γ.Σ(A,B) // Γ,

we can find a diagonal lift r : Γ.Σ(A,B)→ Γ.A.B, so that ri = id. It remains to
show that ir = id. In the square

Γ.A.B i //

i

��

Γ.Σ(A,B)

��
Γ.Σ(A,B) // Γ

both id and ir are diagonal lifts. By orthogonality of i, they are therefore equal,
hence ir = id, as required.

Note that given a Σ-type structure, we can define a natural map i : Γ.A.B →
Γ.Σ(A,B) using the universal property of context extension, and i satisfies con-
dition (ii) of proposition 4.4 by construction, hence in particular it is an isomor-
phism by proposition 4.4 itself.

4.2 Π-types
The definition of Π-types is entirely analogous to that of Σ-types. We skip to
the stable version directly.
Definition 4.5. A (stable) Π-type structure on a cwf C is given by:

• a natural transformation Π: Ty(2) → Ty;
• a natural isomorphism TmΓ(Π(A,B)) ∼= TmΓ.A(B) of functors C/Ty(2) →

Set.
Here applying the isomorphism left to right corresponds to application of a
dependent function, while right to left is λ-abstraction. Again, the fact that
these two maps compose to identities corresponds to the β and η rules of Π-
types.
As for Σ-types, we can characterise the natural isomorphism in definition 4.5
without using terms. This time, however, we do not have a simple isomorphism
of contexts as in the case of Σ-types, and not as many different characterisa-
tions.
Proposition 4.6. Let Π: Ty(2) → Ty be a natural transformation, and

ε : Γ.A.Π(A,B)→ Γ.A.B

a morphism over Γ.A, natural in (Γ, A,B) ∈ C/Ty(2). The following are equivalent:
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(i) the map TmΓ(Π(A,B))→ TmΓ.A(B) induced by ε is an isomorphism;

(ii) for all (∆, σ) ∈ C/Γ, ε induces an isomorphism

C/Γ(∆,Γ.Π(A,B)) ∼= C/Γ.A(∆.Aσ,Γ.A.B).

Proof. Entirely analogous to the proof of (i)↔ (ii) in proposition 4.4.

Just like in the case of Σ-types, given a Π-type structure on C, we can define a
natural map ε : Γ.A.Π(A,B) → Γ.A.B using the universal property of context
extension, and proposition 4.6 applies.

4.3 Equality types
Equality types usually come in two flavours, which we will refer to as extensional
and intensional. Extensional equality types are similar to Σ and Π types, and
satisfy an analogous universal property. Intensional equality types are weaker,
and do not satisfy a universal property in the usual categorical sense.

4.3.1 Extensional equality

Definition 4.7. An extensional equality type structure on a cwf C is given by a
choice of types EqA : Ty(Γ.A.A), natural in (Γ, A) ∈ C/Ty, such that the first
projection ∐

a,a′∈TmΓ(A)

TmΓ(EqA(a, a′))→ TmΓ(A), (1)

is an isomorphism over TmΓ(A)2, where the map TmΓ(A) → TmΓ(A)2 is the
diagonal.
Remark 4.8. The condition of definition 4.7 contains two statements: first, the
first projection is a morphism over TmΓ(A)2, which means that the first and sec-
ond projections are actually equal; second, both projections are isomorphisms.
The two statements can be summarised by saying that for all terms a, a′ ∈
TmΓ(A), there exists at most one term of type TmΓ(EqA(a, a′)), and it does exist
if and only if a = a′. Note that the choice of using the first projection as the map
is immaterial. In fact, there is at most one map (1) over TmΓ(A)2.
Remark 4.8 can be interpreted by saying that extensional equality types pre-
cisely reflect the external equality of terms into the logical structure of a cwf.
An equality type is inhabited precisely when the corresponding terms are equal
semantically, and there is at most one witness of equality.
Proposition 4.9. Let EqA ∈ Ty(Γ.A.A), natural in (Γ, A), and

r : Γ.A→ Γ.A.A.EqA

a natural morphism over Γ.A.A, where the implicit map Γ.A→ Γ.A.A is the variable
vA. The following are equivalent.
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(i) r is an isomorphism;

(ii) EqA is an extensional equality type structure;

(iii) for all types X ∈ Ty(Γ.A.A.EqA), the map

r∗ : TmΓ.A.A.EqA(X)→ TmΓ(Xr)

is an isomorphism;

(iv) r is left orthogonal to all display maps.

Proof. (i) → (ii) By the universal property of context extension, r induces an
isomorphism

TmΓ(A)→
∐

a,a′∈TmΓ(A)

TmΓ(EqA(a, a′))

over TmΓ(A)2. The inverse of this isomorphism is therefore also a morphism
over TmΓ(A)2. By remark 4.8 this inverse must be the first projection, which
shows that EqA satisfies the condition of definition 4.7.
(ii) → (i) Let (∆, τ) ∈ C/Γ.A.A. Write τ = (σ, a, a′), with σ : ∆ → Γ, and
a, a′ ∈ Tm∆(Aσ). Since

C/Γ.A.A(∆,Γ.A.A.EqA) ∼= Tm∆(EqAτ),

there is at most one such morphism, and there is one if and only if a = a′. By
a similar argument, the same property is true for C/Γ.A.A(∆,Γ.A). It follows
that the morphism

C/Γ.A.A(∆,Γ.A)→ C/Γ.A.A(∆,Γ.A.A.EqA)

induced by r must be an isomorphism. By the Yoneda lemma, r itself is then
an isomorphism.
The rest of the proof is completely analogous to that of proposition 4.4, and is
left to the reader.

4.3.2 Intensional equality

To define intensional equality, we weaken the definition of extensional equality
types using their characterisation in terms of elimination properties (condition
(iii) in proposition 4.9) or orthogonality (condition (iv)).
Definition 4.10. An intensional equality type structure on a cwf C is given by:

• a natural choice of types EqA ∈ Ty(Γ.A.A);
• a natural map r : Γ.A→ Γ.A.A.EqA over Γ.A.A;
• for all X ∈ Ty(Γ.A.A.EqA), a natural transformation

J : TmΓ.A(Xr)→ TmΓ.A.A.Eq(X),

17



such that r∗J = id.
Remark 4.11. Definition 4.10 is only correct if the cwf C has a Π-type structure.
For a general cwf, definition 4.10 needs to be modified to include the so-called
Frobenius condition, generalising the map J . Since we will not be interested in
cwfs without Π-types, the simplified definition above is good enough for our
purposes.
The naturality condition in definition 4.10 might not be entirely clear, so we
will make explicit. Given a context morphism σ : ∆ → Γ, it requires that the
square

Tm∆.Aσ(Xσ+++r) J // Tm∆.Aσ.Aσ.EqAσ (Xσ+++)

TmΓ.A(Xr)
J

//

(σ+)∗
OO

TmΓ.A.A.EqA(X)

(σ+++)∗
OO

commute, where we have implicitly used the fact that rσ+ = σ+++r.
Remark 4.12. The condition r∗J = id can be thought of as a β rule. The cor-
responding η rule, which is not assumed, would say that Jr∗ = id, and there-
fore imply that r∗ is an isomorphism. Hence, by proposition 4.9, an intensional
equality type structure satisfies the η rule if and only if it is an extensional equal-
ity type structure.
There is also a way to relate the definition of intensional equality types to an or-
thogonality condition corresponding to that of extensional equality types. Since
intensional equality is weaker, we need to weaken the definition of orthogonal-
ity accordingly.
Definition 4.13. Let f : A → B and g : X → Y be morphisms in a category A.
We say that f has the left lifting property with respect to g (or equivalently that
g has the right lifting property with respect to f) if for all commutative squares

A
u //

f

��

X

g

��
B

v
// Y,

there exists a diagonal lift, i.e. a morphism ` : B → X that makes both triangles
commute:

A
u //

f

��

X

g

��
B

v
//

`

>>

Y.

Definition 4.13 is virtually identical to definition 4.3, with the only difference
being that the diagonal lift is not required to be unique. In particular, if f is left
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orthogonal to g, then it also has the left lifting property with respect to g. For
this reason, one can also say that f is weakly left orthogonal to g to mean that it
has the left lifting property with respect to g (and similarly for right).
Proposition 4.14. Suppose C is equipped with an intensional equality type structure.
Then for all A ∈ Ty(Γ), the morphism r : Γ.A → Γ.A.A.EqA has the left lifting
property with respect to all display maps.

Proof. Let ∆ ∈ C, X ∈ Ty(∆), and suppose given a commutative square

Γ.A u //

r

��

∆.X

pX

��
Γ.A.A.EqA v

// ∆.

By the universal property of context extension, there is a term d ∈ TmΓ.A(Xvr)
such that u = (vr, d). It is now easy to verify that (v, Jd) : Γ.A.A.EqA → ∆.X is
a diagonal lift.

4.4 Universes
A universe is, roughly speaking, a type having types as elements. Let us begin
with a very weak (and general) definition.
Definition 4.15. A universe in a cwf C is a context U , together with a type El ∈
Ty(U).
The idea is that we can use El to convert morphisms A ∈ C(Γ,U) into types
El(A) ∈ Ty(Γ). Of course, this does not mean that we can identify such mor-
phisms with types, as the conversion function is not guaranteed to be an iso-
morphism. However, we can define a new set of types using U :

TyU (Γ) = C(Γ,U),

and it is easy to see that this can be extended to a new cwf structure on C, where
the corresponding functor of terms is given by

TmUΓ (A) = TmΓ(El(A)).

We we refer to TyU as the presheaf of types classified by U . We say that U classifies
all types if the map TyU (Γ)→ Ty(Γ) is an isomorphism.
As a special case of universe, we can take a context U that is obtained from the
empty context (i.e. the distinguished terminal object 1) of C by extending it
with a type in Ty(1), which we will also denote U .
Definition 4.16. A small universe is a type U ∈ Ty(1), together with a type El ∈
Ty(U) = Ty(1.U).
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In particular, any small universe is a universe. In most cases, one cannot expect a
small universe to classify all types, because it would in particular classify itself,
which tends to be impossible for size reasons.
Universe can often be used to turn unstable type formers into stable ones. We
give an example of such a result, which will be useful later.

4.5 Type formers in presheaf models

We now define type formers for a presheaf model Î.

Lemma 4.17. For Γ ∈ Î and A ∈ Î/Γ, there is a natural isomorphism of categories

(I/Γ)/A ∼= I/(Γ.A)

over I/Γ.

Proof. Objects of (I/Γ)/A are triples (i, x, a), with i ∈ I , x ∈ Γ(i), and a ∈
A(i, x). Using lemma 3.4, an identical description holds for the objects of I/(Γ.A).
This establishes a bijection between the objects, and it is easy to verify that it ex-
tends to morphisms, hence to an isomorphisms of categories. Naturality can be
verified easily.

Now let Γ ∈ Î be a presheaf. IfA ∈ Ty(Γ), then types over Γ.A are by definition
presheaves on I/(Γ.A), so by lemma 4.17 we can regard them as presheaves
on (I/Γ)/A. This means that we if think of A as a context in the presheaf cat-
egory I/Γ, then B can correspondingly be thought of as a type over that con-
text.
This sort of relativisation procedure allows us to define most type formers for the
special case of the empty context, as long as we define it for arbitrary presheaf
categories. To extend a construction to the general case of a context Γ ∈ Î, we
can simply work in Î/Γ and apply the construction there.
Unfortunately, this is not quite enough, since there is no guarantee that a con-
struction obtained this way is stable, so stability need to be checked separately.
The definition of Σ-types in Î is particularly simple in the empty context. Given
a type A ∈ Ty(1), and B ∈ Ty(1.A), we can think of A as a context, and define
Σ(A,B) to simply be A.B, which is clearly V-small, hence can be regarded as a
type over the empty context. Now we can extend this definition to an arbitrary
context as explained above.
Making everything explicit, if Γ ∈ Î, A ∈ Ty(Γ) and B ∈ Ty(Γ.A), we de-
fine:

Σ(A,B)(i, x) =
∐

a∈A(i,x)

B(i, x, a).

20



Note that for the purpose of showing that the definition of the Σ-type structure
is stable, it is actually important to give an explicit definition, or at least one that
does not rely on uniqueness up to isomorphism, since stability is not preserved
across isomorphisms. Fortunately, it is very easy to directly check stability in
this case.
There is an obvious map ι : Γ.Σ(A,B)→ Γ.A.B. In the representation where we
think ofA as a presheaf on I/Γ, the map ι corresponds to the identity. Explicitly,
ι is given by ι(x, (a, b)) = ((x, a), b). Since it simply amounts to rearranging
brackets, it is clear that ι is a natural isomorphism. In conclusion, we get a Σ-
type structure on Î.
To define Π-types, let us begin by reviewing exponentials in presheaf categories.
Given presheaves A, B the exponential [A,B] is a presheaf equipped with a nat-
ural isomorphism

Î(X, [A,B]) ∼= Î(X ×A,B).

By Yoneda, [A,B](i) ∼= Î(I[i]×A,B), and it is easy to see that, if we take this as
the definition of [A,B], the resulting presheaf does satisfy the universal prop-
erty above.
Since Π-types can be thought of as types of dependent functions, it is natural
to define them in terms of exponentials. We first give an unstable definition,
denoted Π′. Let Γ ∈ Î be any context, A ∈ Ty(Γ) and B ∈ Ty(Γ.A). We define
Π′(A,B) as the type obtained from the exponential [A,Σ(A,B)] by taking only
those functions that are the identity on A. More precisely, it is defined by the
following pullback square in Î/Γ:

Π′(A,B) //

��

[A,Σ(A,B)]

��
1

id
// [A,A],

(2)

where the bottom horizontal map corresponds to the identity A → A through
the universal property of the exponential.
Lemma 4.18. Let J = I/Γ. There is a natural isomorphism

Ĵ (X,Π′(A,B)) ∼= Ĵ /A(X ×A,Σ(A,B)),

for X ∈ J .

Proof. Apply the functor Ĵ (X,−) to the pullback square (2), and use the uni-
versal property of the exponentials involved.

It then follows immediately that, for a fixed context Γ, Π′ satisfies the universal
property in the definition of Π-types. Given a morphism σ : ∆→ Γ, it is easy to
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see that Π′(A,B)σ also satisfies the universal property of the Π-type of Aσ and
Bσ+, and therefore we get an isomorphism

Π′(A,B)σ ∼= Π′(Aσ,Bσ+).

To get a stable Π-type structure, we need to modify the definition of Π so that
this isomorphism becomes an identity.
For i ∈ I, and x ∈ Γ(i), regard x as a morphism I[i]→ Γ, and define

Π(A,B)(i, x) = Π′(Ax,Bx+)(i, id).

It is now easy to verify directly that this definition of Π is natural, and since
Π(A,B) ∼= Π′(A,B), it also satisfies the same universal property. Therefore, we
have defined a Π-type structure on Î.
Following a similar approach as for Σ-types, it is also possible to define an ex-
tensional equality type structure on Î, and directly prove its stability. We leave
it as an exercise for the reader.
Finally, we define a universe in Î that classifies all types. In other words, we
want to construct a presheaf U that represents the functor Ty. Assume given
such a U , then by Yoneda:

U(i) ∼= Î(I[i],U) ∼= Ty(I[i]),

which we can take as the definition of U .
Lemma 4.19. There is a natural isomorphism

Î(Γ,U) ∼= Ty(Γ),

for Γ ∈ Î.

Proof. Let R : Cat/I → Î be given by

R(E)(i) = Cat/I(I/i, E).

One can check that R is right adjoint to the functor which sends a presheaf to
its category of elements. Observe that U ∼= R(Vop × I). Therefore

Î(Γ,U) ∼= Cat/I(I/Γ,Vop × I) ∼= Cat(I/Γ,Vop) = Ty(Γ).

The type El ∈ Ty(U), part of the universe structure for U , can now be defined
as the type corresponding to the identity U → U through the isomorphism of
lemma 4.19. By unfolding the construction, we get that Eli(X) = X(i, id).
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5 Simplicial sets
From now on, we will focus on the particular category ∆, defined below, and its
category of presheaves ∆̂, whose objects are referred to as simplicial sets. From
the point of view of the semantics of type theory, the motivation for considering
simplicial sets can be traced back to the groupoid model.
Although one can use groupoids to model a good portion of homotopy type
theory, univalent universes in the groupoid model contain only sets, which ul-
timately means that groupoids cannot be used to model many of the construc-
tions arising from synthetic homotopy theory.
The naive solution to this problem is to generalise groupoids to n-groupoids, i.e.
generalisations of groupoids containingn levels of morphisms (with 0-morphisms
being objects), where the various algebraic laws only hold “weakly”, i.e. up to
the existence of a higher morphism. As it turns out, making such an idea pre-
cise involves a non-trivial amount of combinatorial complexity, and although
there are certain approaches that follow this plan, ultimately a purely algebraic
description of n-groupoids, including the limit case for n = ∞, is extremely
hard to give and to work with.
For this reason, a different approach to higher groupoids, using simplicial sets,
has been devised. As we will see, simplicial sets are essentially combinatorial
descriptions of triangulated spaces of arbitrary dimensions. The key idea is to
think of a simplicial set as the “carrier” of a groupoid, in the sense of the under-
lying family of sets, appropriately indexed, over which one would superimpose
the groupoid structure and the corresponding laws.
However, instead of actual algebraic structure, we turn a simplicial set into
something resembling a higher groupoid by simply asking for the existence of
certain lifts, or, in other words, the ability to complete certain “partial diagrams”
in the simplicial set. As it turns out, the mere existence of these lifts not only
provides the required structure, but it also encodes the various weak laws that
this structure has to satisfy. A simplicial set that satisfies such lifting properties
is called a Kan complex.
The price we pay for this conceptual simplicity is that we lose the algebraic char-
acter of the structure, in the sense that operations are now better thought of as
relations instead of functions. For example, the composition of two morphisms
in such a groupoid is not uniquely defined, but we have to make an arbitrary
choice to extract it. What we know is that a composite always exists, and fur-
thermore we have some kind of “weak uniqueness”, in the sense that any two
composites are related by a higher morphism (in the appropriate sense), and
this higher morphism is itself weakly unique in the same way.
Of course, all the general results about presheaf categories apply in particular
to ∆̂, including the construction of the cwf structure, as well as the various
type formers. However, in order to implement the idea of modelling higher
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groupoids using simplicial sets, we have to restrict the types of the cwf struc-
ture to Kan fibrations, i.e. those relative simplicial sets that do satisfy the lifting
property mentioned above.
Consequently, we have to make sure that the type formers we have defined,
namely Σ- and Π-types, restrict correctly to Kan fibration. Furthermore, we
have to give a different definition of equality, which is specific to simplicial sets,
and is not extensions, in order to have a chance at constructing a univalent uni-
verse. The universe itself is in fact relatively easy to define, but proving that it
is a Kan complex is more involved. Interestingly, we will obtain univalence as
an immediate by-product of that proof.
In the following, for n a natural number, we will denote by [n] the ordered set
of natural numbers less or equal to n. We will often regard [n] as a category,
with a morphism i → j being simply the assertion that i ≤ j. When partially
ordered sets are regarded as categories, monotone (increasing) maps between
them correspond to functors.
Definition 5.1. The simplex category ∆ has natural numbers as objects, and mor-
phisms

∆(n,m) = Cat([n], [m]).

A simplicial set is a presheaf on ∆.
By construction, the assignment n 7→ [n] extends to a fully faithful functor ∆→
Cat. Since Cat is cocomplete, this functor determines an adjunction between ∆̂
and Cat. We will denote the left adjoint (realisation) simply by τ : ∆̂→ Cat, and
the right adjoint (nerve) by N : Cat→ ∆̂.
There is an important geometric intuition underlying the definition of ∆. Every
object n can be thought of as an abstraction of a geometric simplex of dimension
n, i.e. the convex hull of n + 1 affinely independent points in some Euclidean
space. Through this analogy, the object 0, 1, 2 and 3 of ∆ can be thought of as
a point, a segment, a triangle and a tetrahedron respectively.
Remark 5.2. The idea sketched above can be made precise by defining a functor
∆ → Top into the category of topological spaces. It is a useful exercise (al-
though not particularly relevant for our purposes in these notes) to construct
such a functor explicitly. Since Top is cocomplete, this functor determines an
adjunction between ∆̂ and Top. The left adjoint ∆̂ → Top is usually called
geometric realisation, while the right adjoint maps a topological space into its
so-called singular simplicial set.
We can distinguish two special kinds of morphisms in ∆: the injective ones,
forming a wide1 subcategory ∆+, and the surjective ones, forming a wide sub-
category ∆−. Note that for any injective map f ∈ ∆(n,m), one necessarily
has n ≤ m. We say therefore that injective maps “raise dimension”. Similarly,
surjective maps lower dimension.

1A wide subcategory is a subcategory containing all objects.
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There are exactly n+1 injective morphisms in ∆(n−1, n). In fact, for all i ∈ [n],
there is a unique injective map di ∈∆(n− 1, n) whose image does not contain
i. The morphisms di are called face maps. Similarly, there are n + 1 surjective
morphisms in ∆(n+ 1, n). For all i ∈ [n], there is a unique surjective map si ∈
∆(n, n+ 1) such that si(i) = si(i+ 1). The morphisms si are called degeneracy
maps.
Proposition 5.3. The following facts hold for the simplicial category ∆:

• Every morphism can be uniquely factored as a surjective morphism followed by
an injective morphism.

• Every surjective morphism has a section.

• Every morphism can be written as a composition of face and degeneracy maps.

The proof of proposition 5.3 is left as an exercise for the reader.
A consequence of proposition 5.3 is that a simplicial set X can be thought of
as a collection of sets X(n) for all natural numbers n, together with face maps
d∗i : X(n) → X(n − 1) and degeneracy maps s∗i : X(n) → X(n + 1), subject to
appropriate conditions. The elements of X(n) are referred to as n-simplices of
X . The face map di sends an n-simplex to its i-th face, while the degeneracy
map si sends it to a “degenerate” copy of itself, which is an (n + 1)-simplex
where the i-th and (i+ 1)-th vertex are the same.
Remark 5.4. Degenerate simplices have a less compelling geometric interpreta-
tion, and are harder to visualise and to draw, but they are important for techni-
cal reasons. Roughly speaking, degenerate simplices make it possible to have
a simplicial representation for maps that “collapse” dimensions, such as the
trivial map from any space to a point.
It is possible to devise a version of the theory of simplicial sets that forgoes
degeneracies entirely, by focusing on the category ∆+ and its presheaves. Such
objects are called semi-simplicial sets (or ∆-sets, by some authors). The resulting
theory is workable, but much more technically complicated.
Definition 5.5. Let x ∈ X(n) be a simplex of a simplicial set X . We say that
x is non-degenerate if for all surjective maps σ ∈ ∆(k, n), and all simplices
y ∈ X(k), if x = yσ, then σ = id.
Of course, a degenerate simplex is one that is not non-degenerate. Explicitly, x
is degenerate if it can be written in the form yσ, with σ surjective and non-
identity.
Proposition 5.6. LetX be a simplicial set. Any simplex ofX can be uniquely written
in the form yσ, where y is non-degenerate and σ is surjective.

Proof. Any n-simplex x can of course be written as x(id), and id is surjective.
Therefore, there is a minimal k such that x = yσ, for some k-simplex y, and
σ ∈∆−(n, k). Minimality of k implies that y is non-degenerate.
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As for uniqueness, let x = zτ , with z a non-degenerate h-simplex and τ surjec-
tive. Since σ is surjective, it has a section θ ∈∆+(k, n). We can factor τθ = θ′τ ′,
with τ ′ ∈ ∆−(k,m) and θ′ ∈ ∆+(m,h). Now, y = yσθ = xθ = zτθ = zθ′τ ′,
but y is non-denegerate, hence τ ′ = id, and in particular m = k. It follows that
k ≤ h. By reversing the roles of y and z in the above argument, we also get that
h ≤ h, and therefore k = h. But then θ′ = id, hence y = z and σ = τ .

To simplify the notation when working with explicit low-dimensional simplices,
we will employ the convention of denoting a map f ∈∆(n,m) with the ordered
tuple of its values. For example 02 ∈ ∆(1, 3) is the map f such that f(0) = 0
and f(1) = 2. Given a 3-simplex x in a simplicial set X , x(02) then denotes the
1-simplex xf .

5.1 Boundaries, Horns, Kan fibrations
In order to establish the lifting properties mentioned in the introduction to this
section, we need to characterise certain elementary shapes within simplicial
sets.
The simplest kind of shape is the abstract n-simplex, which we simply define as
the representable ∆[n]. Of course, we think of ∆[n] as a copy of the object n
of ∆, living in the category of simplicial sets. Therefore, we can visualise it as
its namesake n-dimensional simplex. Its elements correspond to (possibly de-
generate) k-dimensional subsimplices. Because of degeneracies, k can be larger
than n.
The next shape is the n-boundary ∂∆[n], which we define as the union of all the
face maps ∆[n− 1]→∆[n]. More precisely, consider the map

n∐
i=0

∆[n− 1]→∆[n],

determined by all the face maps, and factor it
n∐
i=0

∆[n− 1] � ∂∆[n] � ∆[n],

as an epimorphism followed by a monomorphism (this can be done by taking
the image levelwise for all j ∈ ∆). The resulting monomorphism ∂∆[n] →
∆[n] is the canonical inclusion of the n-boundary into the n-simplex. Geometrically,
∂∆[n] is the boundary of the n-simplex, topologically equivalent to an (n −
1)-sphere. Note that, for this definition to make sense, we must have n > 0.
However, we extend the definition to n = 0 by setting ∂∆[0] = 0, the empty
simplicial set.
The final basic shape we are going to consider is the horn, given by the union of
all the faces of a simplex except one. Similarly to how we defined the boundary,
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fix a natural number n > 0, and an index k between 0 and n, and consider the
factorisation ∐

i 6=k
∆[n− 1] � Λk[n] � ∆[n]

of the map induced by face maps into an epimorphism followed a monomor-
phism. The resulting map Λk[n] → ∆[n] is the canonical inclusion of the (k, n)-
horn into the n-simplex.
We are now ready to define Kan fibrations, which, as mentioned in the introduc-
tion, will play a crucial role in the definition of the cwf structure on simplicial
sets.
Definition 5.7. A Kan fibration is a map of simplicial sets that has the right lifting
property with respect to all horn inclusions. A Kan complex is a simplicial setX
such that the unique map X → 1 is a Kan fibration.
The key concept at play here is that of a Kan complex, and a Kan fibration is
simply the canonical way of relativising the notion of Kan complex to a family
of simplicial sets. To understand the significance of Kan complexes and Kan
fibration, it is useful to keep in mind the following characterisations of horns
and boundaries, whose proofs are left as exercises for the reader.
Lemma 5.8. The n-boundary can be expressed as a coequaliser:∐

i<j

∆[n− 2]
u

⇒
v

∐
i

∆[n− 1]→ ∂∆[n],

where u and v are characterised by the commutativity of the following squares:

∆[n− 2]
dj−1 //

`i,j

��

∆[n− 1]

`i

��∐
i′<j′

∆[n− 2]
u
//
∐
i′

∆[n− 1],

∆[n− 2] di //

`i,j

��

∆[n− 1]

`j

��∐
i′<j′

∆[n− 2]
v
//
∐
i′

∆[n− 1],

and `i, `i,j denote the canonical inclusions into the two coproducts.

Lemma 5.9. The (k, n)-horn can be expressed as a coequaliser:∐
i<j
i,j 6=k

∆[n− 2] ⇒
∐
i 6=k

∆[n− 1]→ Λk[n],
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where the maps are defined similarly to those of lemma 5.8.

Lemma 5.9 allows us to define a (k, n)-horn in a simplicial set X , i.e. a map
Λk[n] → X , by specifying n simplices in X of dimension n − 1, subject to con-
ditions corresponding to the maps of the coequaliser. For example, to define a
(1, 2)-horn in X , we simply give two 1-simplices f , g of X , subject to the condi-
tion f(1) = g(0).
If we focus on the 0- and 1-dimensional simplices of a simplicial set X , we can
observe that they form a directed graph, where the vertices are exactly the 0-
simplices, and the edges x to y are those 1-simplices f such that f(0) = x and
f(1) = y.
Now let us assume that X is a Kan complex. Two “composable” 1-simplices f
and g (i.e. satisfying f(1) = g(0)) uniquely determine a map [f, g] : Λ1[2]→ X ,
as we have observed above. Therefore, the lifting condition for X says that
there exists a 2-simplex α : ∆[2] → X extending [f, g]. In particular, we get a
1-simplex h = α(02) : ∆[1]→ X between f(0) and g(2), which we can think of
as a composition of f and g.
As briefly mentioned in the introduction, a Kan complex does not come equipped
with specified composites for such 1-simplices, but only with a relation that de-
termines when a simplex like h is indeed a composition of f and g. Namely, this
is the case exactly when there is a 2-simplex α whose faces are exactly f , g and
h.
The (1, 2)-horn lifting condition can therefore be thought of as stating that every
composable pair of edges in X has a composition.
We have seen that the Yoneda lemma implies that every presheaf can be written
as a colimit of representables. However, in the case of simplicial set, we can be
more precise, and obtain a decomposition of any monomorphism as a colimit
of a chain of “cell attachments”, i.e. pushouts along (coproducts of) boundary
inclusions.
Lemma 5.10. Let i : A → B be a monomorphism of simplicial sets. There is a chain
of morphisms Bn → Bn+1, indexed over the natural numbers, such that:

• B0 = A;

• colim
n

Bn ∼= B;

• i corresponds to the induced map A→ colim
n

Bn;

• for all n ≥ 1, there is a pushout diagram∐
x∈In ∂∆[n] //

��

Bn−1

��∐
x∈In ∆[n] // Bn,
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where In is the set of non-degenerate simplices of B not contained in the image
of A.

Proof. To simplify notation, we will regard A as a subfunctor of B. Let Bn be
the subfunctor of B generated by the n-simplices of B and all the simplices of
A. Then the first three properties are easy to verify, so we will only deal with
the last one.
Fix a simplexx ∈ In. By Yoneda, we get a corresponding mapx : ∆[n]→ B, and
it easy to see that the restriction of x to ∂∆[n] lies inBn. Taking the coproduct of
all those maps x yields the top horizontal map in the pushout diagram above.
The left vertical map is simply the coproduct of boundary inclusions.
One can quickly verify that the square commutes. To show that it is a pushout,
we proceed by fixing an object k ∈ ∆, and proving that the corresponding
diagram in Set∐

x∈In

∂∆[n](k) ⇒ Bn−1(k)q
∐
x∈In

∆(k, n) ρ−→ Bn(k)

is a coequaliser.
First, observe that every n-simplex of Bn is either in Bn−1 or non-degenerate.
Therefore ρ is surjective.
Next, take any two elements in the domain of ρ which are mapped to the same
element of Bn(k). We have to show that they are identified in the coequaliser.
We distinguish three cases.
If they both belong to Bn−1(k), then they are equal, since the map Bn−1(k) →
Bn(k) is an inclusion.
If ρ(x, θ) = b, with b ∈ Bn−1(k), write b = b′σ, for some non-degenerate b′ ∈
Bn−1(k′), and σ surjective. If θ is also surjective, then by the uniqueness part of
proposition 5.6 we have that x = b′, which is impossible, since x ∈ In, while b is
k′-dimensional, and k′ < n. Therefore θ is not surjective, hence θ ∈ ∂∆[n](k),
which implies that (x, θ) and b are identified in the coequaliser.
Finally, assume ρ(x, θ) = ρ(x′, θ′), with x, x′ ∈ In and θ, θ′ ∈ ∆(k, n). If xθ ∈
Bn−1(k), then we are done by the previous step. Therefore, we can assume that
θ is surjective. Similarly, θ′ can be taken to be surjective. But then x = x′ and
θ = θ′ by the uniqueness part of proposition 5.6 again.

5.2 Types and universes of Kan fibrations

The category ∆̂ of simplicial sets is a presheaf category, and therefore it comes
equipped with a canonical cwf structure supporting Σ-types, Π-types, exten-
sional equality types and a universe classifying all types, which we constructed
in sections 3.4 and 4.5.
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Let us denote by Ty′ : ∆̂op → Set the functor of types, part of the cwf struc-
ture on ∆̂ as a presheaf category. Define a new functor Ty : ∆̂op → Set by
setting

Ty(Γ) = {A ∈ Ty′(Γ) | Γ.A pA−−→ Γ is a Kan fibration}.
The fact that Ty is a well-defined functor is a consequence of the following
proposition.
Proposition 5.11. Let A ∈ Ty′(Γ) be a type over a context Γ ∈ ∆̂ such that Γ.A pA−−→
Γ is a Kan fibration, and σ : ∆ → Γ any morphism. Then ∆.Aσ pAσ−−→ ∆ is a Kan
fibration.

Proof. Consider a diagram

Λk[n] //

��

∆.Aσ σ+
//

pAσ

��

Γ.A

pA

��
∆[n] // ∆

σ
// Γ.

We know that the right square is a pullback by lemma 3.2, and the right vertical
map is a fibration by assumption. Therefore, there exists a lift ` : ∆[n] → Γ.A
for the outer rectangle. Using the universal property of the pullback, we get an
induced map `′ : ∆[n] → ∆.Aσ, and it is easy to verify that `′ is a diagonal lift
for the left square.

Types in Ty(Γ) will be called fibrant types. The rest of the cwf structure on ∆̂
can now be transported to fibrant types in a straightforward way. For example,
terms of a fibrant type A are simply defined to be terms of the underlying type
of A.
Now, let U ′ be the Hofmann-Streicher universe for ∆̂. Recall that U ′ is defined
so that ∆̂(Γ,U ′) ∼= Ty′(Γ). Let us now apply the same construction using Ty
instead of Ty′. Explicitly, define a simplicial set U by:

U(n) = Ty(∆[n]).

It is clear that U is a subfunctor of U ′. In particular, we can regard ∆̂(Γ,U) as a
subset of ∆̂(Γ,U ′), and in fact the following proposition implies that it is exactly
the subset of those morphisms corresponding to fibrant types over Γ.
Remark 5.12. Note that the definition of U implies that an elementA ∈ U ′(n) be-
longs to U(n) if and only if the corresponding type El(A) ∈ Ty′(∆[n]) is fibrant.
Proposition 5.13. Let A : ∆̂(Γ,U ′). Then A factors through U if and only if El(A) ∈
Ty(Γ).
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Proof. First assume that El(A) ∈ Ty(Γ), and fix n ∈ ∆ and x ∈ Γ(n). Then
El(Ax) = El(A)x ∈ Ty(∆[n]) by proposition 5.11, hence A(x) ∈ U(n) by re-
mark 5.12.
Conversely, suppose that A factors through U , and consider a lifting problem

Λk[n] u //

��

Γ.El(A)

��
∆[n]

v
// Γ.

By lemma 3.2, we can insert a pullback square in the diagram as follows:

Λk[n] //

��

∆[n].El(Av) u //

��

Γ.El(A)

��
∆[n] =

// ∆[n]
v

// Γ,

and the middle vertical map is a fibration by remark 5.12. Therefore, we get a lift
for the left square, and composing with u yields a lift for the original square.

5.3 Type formers and Kan fibrations
In this section we will construct the various type formers defined in section 4
in the cwf of simplicial sets and Kan fibrations, which we have set up in sec-
tion 5.2.

5.3.1 Open prisms

We begin with some preliminary results of combinatorial nature, which will
prove very useful in the following sections.
If n is a natural number, let the (k-oriented) open n-prism P k[n] be the simplicial
set defined by the pushout

∂∆[n]
id×(k) //

��

∂∆[n]×∆[1]

��
∆[n] // P k[n].

Geometrically, P 0[n] is a subspace of the prism ∆[n] ×∆[1] consisting of the
base of the prism ∆[n] × {0}, together with all the side faces. The top face, as
well as the interior of the prism, are missing.
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In fact, there is a canonical map i : P k[n] → ∆[n] ×∆[1], called an open prism
inclusion, induced by the inclusions ∂∆[n]→∆[n] and ∆[0] (k)−−→∆[1], and it is
easy to see that i is a monomorphism.
More generally, we can start with an arbitrary monomorphism j : A → B of
simplicial sets, and obtain a similarly defined monomorphism

i : B qA(A×∆[1])→ B ×∆[1],

which we will refer to as a generalised open prism inclusion.
Prism inclusions and their generalisations are of fundamental technical impor-
tance in the study of Kan fibrations, since the former play the same role of horn
inclusion in the characterisation of the latter.
Lemma 5.14. Let p : Y → X an arbitrary map of simplicial sets, and let L be the class
of maps that have the left lifting property with respect to p.

(i) If fi : Ai → Bi is a family of maps inL, then the coproduct map
∐
iAi →

∐
iBi

belongs to L.

(ii) If f : A→ B is in L, and
A //

f

��

C

g

��
B // D

is a pushout square, then g ∈ L.

(iii) If fn : An → An+1 is a chain of maps in L, indexed by the natural numbers,
their infinite composition, i.e. the canonical map A0 → colim

n
An, is also in L.

(iv) Let f : A→ B be a retract of g : C → D, i.e. suppose that there exists a diagram

A //

f

��

C //

g

��

A

f

��
B // D // B,

where the horizontal maps A → A and B → B are both identities. Then g ∈ L
implies f ∈ L.

The proof of lemma 5.14 is left as an exercise for the reader.
Remark 5.15. Dualising lemma 5.14 yields a statement about the class of maps
defined by a right lifting property, such as Kan fibrations. In particular, Kan
fibrations are closed under pullbacks (cf. proposition 5.11), finite compositions
and retracts.
Proposition 5.16. Let p : Y → X be a map of simplicial sets. The following are
equivalent:
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(i) p is a Kan fibration;

(ii) p has the right lifting property with respect to all open prism inclusions;

(iii) p has the right lifting property with respect to all generalised open prism inclu-
sions.

Proof. (i)→ (ii) By lemma 5.14 it is enough to prove that open prism inclusions
can be obtained as compositions of pushouts of horn inclusions, and by symme-
try we can limit ourselves to 1-oriented open prism inclusions. For 0 ≤ k ≤ n,
let σk be the non-degenerate (n+ 1)-simplex of the prism ∆[n]×∆[1] defined
as the image through the nerve of the functor

σk : [n+ 1]→ [n]× [1]

σk(i) =
{

(i, 0) for i ≤ k,
(i− 1, 1) otherwise.

Let Ak be the subfunctor of ∆[n] ×∆[1] generated by the open prism and the
simplices σi for i ≤ k. Then, by construction, the open prism inclusion P 1[n]→
∆[n] × ∆[1] can be factored as a composition of inclusions Ak−1 → Ak, for
0 ≤ k ≤ n, with the convention that A−1 = P 1[n].
One can then check directly that there is a pullback square of inclusions:

Λk+1[n+ 1] //

��

Ak−1

��
∆[n+ 1]

σk
// Ak.

Since the bottom horizontal map and the right vertical map are jointly surjec-
tive, it follows that the square above is also a pushout, as required.
(ii) → (iii) Suppose that p has the right lifting property with respect to open
prism inclusions. It then follows easily from the adjunction defining exponen-
tials that the induced map

p′ : [∆[1], Y ]→ [∆[1], X]×X Y

has the right lifting property with respect to all boundary inclusions. By lem-
mas 5.10 and 5.14, p′ has the right lifting property with respect to all monomor-
phisms, which, using the the exponential adjunction again, implies that p has
the right lifting property with respect to generalised open prism inclusions.
(iii)→ (i) One can show that, for k < n, the horn inclusion i : Λk[n]→∆[n] is
a retract of the 0-oriented generalised open prism inclusion corresponding to i
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itself. More explicitly, there is a diagram

Λk[n] //

��

∆[n]qΛk[n](Λk[n]×∆[1]) //

��

Λk[n]

��
∆[n]

id×(1)
// ∆[n]×∆[1]

r
// ∆[n],

where the top maps are restrictions of the bottom maps, and r is the image
through the nerve of the functor

r : [n]× [1]→ [n]

r(i, b) =
{
k if i ≥ k and b = 0
i otherwise

We leave the details of the proof to the reader. In the case k > 0 one can anal-
ogously show that Λk[n] → ∆[n] is a retract of a 1-oriented generalised open
prism inclusion.

5.3.2 Σ-types

The case of Σ-types is particularly simple. The idea is to reuse the construc-
tion of Σ-types in general presheaf models. Since fibrant types are in particular
types for the presheaf cwf structure, we automatically get a Σ-type structure
satisfying the correct universal property and stability condition as soon as we
prove that fibrancy is preserved by the Σ operation on types. This is achieved
by the following result.
Proposition 5.17. Let Γ ∈ ∆̂ be a context, and A ∈ Ty(Γ), B ∈ Ty(Γ.A) be fibrant
types. Then Σ(A,B) is fibrant.

Proof. Since Γ.Σ(A,B) ∼= Γ.A.B over Γ, the map Γ.Σ(A,B) → Γ is isomorphic
to the composition Γ.A.B → Γ.A → Γ, and therefore it is a Kan fibration by
remark 5.15.

5.3.3 Homotopy

The definition of the simplicial model of homotopy type theory is based on the
“homotopical” character of simplicial sets, i.e. the ability of the category ∆̂ to
act as a “model” for the homotopy theory of topological spaces.
Making such a statement precise is possible, but outside of the scope of these
notes. It is, however, relatively easy, and already quite useful, to formulate a no-
tion of homotopy between maps. This will be a key concept in the construction
of intensional identity types and Π-types.
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Definition 5.18. Let f, g : X → Y be maps of simplicial sets. A homotopy h : f ∼
g is a morphism

h : X ×∆[1]→ Y,

such that h ◦ (id× (0)) = f and h ◦ (id× (1)).
Definition 5.18 is a direct simplicial translation of the corresponding topolog-
ical notion, where we are using the abstract 1-simplex to play the role of the
topological interval. Similarly, we can define a notion of equivalence as an ap-
propriately well-behaved “isomorphism up to homotopy”.
Definition 5.19. Let f : X → Y be a map of simplicial sets. We say that f is a
strong homotopy equivalence if there exists g : Y → X , and homotopies h : gf ∼
idX , k : fg ∼ idY , such that the square

X ×∆[1] f×id //

h

��

Y ×∆[1]

k

��
X

f
// Y

commutes.
The importance of definition 5.19 lies in the following result.
Lemma 5.20. Let f : X → Y be a monomorphism and a strong homotopy equivalence.
Then f has the left lifting property with respect to fibrations.

Proof. Let i be the generalised open prism inclusion corresponding to f . Let
g : Y → X a homotopy inverse of f , and h, k the homotopies given by the
definition of strong homotopy equivalence. We can construct a commutative
square:

Y qX(X ×∆[1])
[g,h] //

i

��

X

f

��
Y ×∆[1]

k
// Y,

and it follows that f is a retract of i. Since i has the left lifting property with
respect to fibrations by proposition 5.16, so does f by lemma 5.14.

5.3.4 Intensional equality types

Definition 5.21. Let Γ ∈ ∆̂, and A ∈ Ty(Γ) a fibrant type. Define the path type
of A:

P (A) = Π(∆[1], A),

where ∆[1] is implicitly weakened to be a type in the context Γ.
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By definition, P (A) is a type over Γ. We now want to show that P (A) can also
be regarded as a type over Γ.A.A, and therefore be taken as the definition of an
intensional type structure on ∆̂.
First, observe that Γ.Π(∆[0], A) ∼= Γ.A over Γ. Since ∂∆[1] ∼= ∆[0]q∆[0], it
follows there is an isomorphism Γ.Π(∂∆[1], A) ∼= Γ.A.A over Γ. The boundary
inclusion ∂∆[1] → ∆[1] then determines a map with V-small fibres Γ.P (A) →
Γ.A.A, and therefore a (not necessarily fibrant) type EqA ∈ Ty(Γ.A.A). Our
goal is now to show that EqA is in fact fibrant.
Let us consider a generalisation of generalised open prisms, defined for an ar-
bitrary pair of morphisms f : A → B and g : C → D. There is an obvious
commutative square

A× C //

��

A×D

��
B × C // B ×D,

which determines a map f×̂g : (B×C)qA×C(A×D)→ B×D from the pushout
to the bottom right corner. We call f×̂g the Leibniz product of f and g, because
it is reminiscent of the Leibniz rule for the derivative of a product.
Note that, using this language, a generalised open prism inclusion induced by a
monomorphism j : A→ B is simply the Leibniz product of j with an endpoint
inclusion ∆[0]→∆[1].
Leibniz product is a special case of the Leibniz construction. See [14] for a de-
tailed exposition of its properties. In the following, we will only need the fol-
lowing.
Lemma 5.22. Leibniz product is associative, i.e. given maps f : A→ B, g : C → D,
h : E → F , there is a canonical isomorphism (f×̂g)×̂h ∼= f×̂(g×̂h) in the arrow
category ∆̂[1].

Proof. Consider the diagram X obtained from the cube

A×D × E //

��

B ×D × E

��

A× C × E //

77

��

B × C × E

77

��

A×D × F // B ×D × F

A× C × F //

77

B × C × F

77
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by removing the corner corresponding to B × D × F . A lengthy but straight-
forward diagram chasing argument shows that the domains of both (f×̂g)×̂h
and f×̂(g×̂h) come equipped with a universal cocone from X such that the
corresponding maps into B ×D × F are induced by the cube above using the
universal property of the colimit.
The conclusion then follows directly from uniqueness of colimits up to isomor-
phism.

Proposition 5.23. The map p : Γ.P (A) → Γ.A.A is a Kan fibration, hence EqA is a
fibrant type.

Proof. Let f : X → Y be an arbitrary map. Given a lifting problem

X //

f

��

Γ.Π(∆[1], A)

��
Y // Γ.Π(∂∆[1], A),

the universal property of Π-types implies that finding a lift in the above diagram
is equivalent to finding a lift in the diagram

(X ×∆[1])qX×∂∆[1](Y × ∂∆[1]) //

��

Γ.A

��
Y ×∆[1] // Γ

where the left vertical map is the Leibniz product of f and the boundary inclu-
sion j : ∂∆[1]→∆[1].
To show that p is a fibration, it enough, by proposition 5.16, to show that p has
the right lifting property with respect to generalised open prism inclusions. By
the above argument, that is itself equivalent to showing that Γ.A → Γ has the
right lifting property with respect to maps v = u×̂j, where u is a generalised
open prism inclusion.
Now, u = (k)×̂i, where (k) : ∆[0] → ∆[1] is an endpoint inclusion and i is an
arbitrary monomorphism. Therefore, lemma 5.22 implies that v ∼= (k)×̂(i×̂j),
and it is easy to check that the Leibniz products of two monomorphisms is a
monomorphism, hence v is itself a generalised open prism inclusion.
Since Γ.A→ Γ is a Kan fibration, it has the right lifting property with respect to
v, and therefore p has the right lifting property with respect to u, as claimed.

Now that we have an equality type, it remains to define the reflexivity map and
the corresponding elimination property.
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Define r : Γ.A→ Γ.A.A.EqA as the map induced on Π-types by the unique map
∆[1]→∆[0], or in other words, the map corresponding to the projection

Γ.A×∆[1]→ Γ.A,

through the universal property of Π-types. Explicitly, for all n ∈ ∆, x ∈ Γ(n)
and a ∈ A(x, a), we have r(x, a) = (x, p), where p : ∆[n] ×∆[1] → ∆[n].Ax is
given by p(u, t) = (u, au).
Proposition 5.24. The map r : Γ.A → Γ.A.A.EqA has the left lifting property with
respect to fibrations.

Proof. Let c : ∆[1]×∆[1]→∆[1] be the image through the nerve of the functor

max : [1]× [1]→ [1].

Correspondingly, we get a map

Γ.Π(∆[1], A)×∆[1]×∆[1] id×c−−−→ Γ.Π(∆[1], A)×∆[1] ε−→ Γ.A,

and hence a map

h : Γ.Π(∆[1], A)×∆[1]→ Γ.Π(∆[1], A).

Explicitly, for all n ∈∆, x ∈ Γ(n), p : ∆[n]×∆[1]→∆[n].Ax, and t ∈∆(n, 1),
we have h(x, p, t) = (x, q) where q(u, s) = p(u, c(s, t)).
Now let π1 : Γ.A.A.EqA → Γ.A be the projection on the secondA factor. Explic-
itly, π1(x, p) = (x, p(id, 1)). It is easy to verify that h is a homotopy between the
identity and π1 ◦ r. Furthermore, r ◦ π1 = idΓ.A. Finally, the square

Γ.A×∆[1] r×id //

��

Γ.A.A.EqA ×∆[1]

h

��
Γ.A

r
// Γ.A.A.EqA

commutes, as one can verify by using the explicit expressions for the maps in-
volved. In conclusion, r is a strong homotopy equivalence. But r is clearly a
monomorphism, since it has a left inverse, therefore it has the left lifting prop-
erty with respect to fibrations by lemma 5.20.

We will now complete the construction of the intensional equality type struc-
ture on ∆̂. We know that Eq and the reflexivity map are stable, since they are
built using the stable Π-type structure of the presheaf model. The fact that
the reflexivity map has the left lifting property with respect to display maps
(proposition 5.24) can be used to construct an eliminator, but we need to be
careful to ensure that the eliminator is stable.
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Proposition 5.25. The cwf of simplicial sets has an intensional equality type structure.

Proof. We already have Eq and r, so it remains to define a natural map
J : TmΓ.A(Xr)→ TmΓ.A.A.EqA(X),

for all contexts Γ ∈ ∆̂, A ∈ Ty(Γ), X ∈ Ty(Γ.A.A.EqA), such that r∗J = id.
The main idea is to use the universe U to construct a context Θ that “classifies”
the possible parameters of J , i.e. the triples (A,X, d), with A,X as above, and
d ∈ TmΓ.A(Xr). This means that there exists a universal such triple (A,X, d) in
context Θ such that, for all contexts Γ, and triples (A,X, d), there exists a unique
morphism φA,X,d : Γ→ Θ with A = AφA,X,d, X = Xφ+++

A,X,d and d = dφ+
A,X,d.

We can do this in stages, one for each of the three parameters. The first stage is
Θ0 = U , andA is simply El, which is a universal fibrant type by proposition 5.13.
For the next stage, we take the exponential Θ1 = [Π(∆[1],A),Θ0 × U ] in the
category ∆̂/Θ0, where the map Θ1 × U → U is the second projection.
The type X is defined to be the one corresponding to the composition

Θ1.A.A.EqA
∼= Θ1 ×Θ0 Θ0.Π(∆[1],A) ε−→ Θ0 × U → U ,

where ε is the evaluation map.
The final step Θ is just the context extension of Θ1 with the type Π(A,Xr), and
we define d to be the corresponding variable. Thanks to the universal property
of Π-types, we can regard d as a morphism Θ.A→ Θ.Xr over Θ.
Now consider the “universal” lifting problem:

Θ.A //

r

��

Θ.A.A.EqA.X

��
Θ.A.A.EqA =

// Θ.A.A.EqA,

where the top horizontal map is the composition

Θ.A d−→ Θ.Xr r+

−−→ Θ.A.A.EqA.X,

and fix a lift, which we can regard as a term J0 ∈ TmΘ.A.A.EqA
(X) satisfying

J0r = d.
Now we can define J as J(d) = J0φ

+++
A,X,d.

The fact that J is a valid eliminator follows from naturality of r, since we have
J(d)r = J0φ

+++
A,X,dr = J0rφ

+
A,X,d = dφ+

A,X,d = d.
Furthermore, J is stable. In fact, given any morphism σ : ∆ → Γ, we have
φAσ,Xσ+++,dσ+ = φA,X,dσ, and therefore

J(dσ+) = J0φ
+++
Aσ,Xσ+++,dσ+ = J0φ

+++
A,X,dσ

+++ = J(d)σ+++.
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5.3.5 Π-types

The goal of this section is to construct a Π-type structure on the cwf of simpli-
cial sets and Kan fibrations. As for Σ-types, we are going to reuse the Π-type
structure on a general presheaf category, and therefore we only need to verify
that Kan fibrations are closed under Π-types. More precisely, we are going to
prove the following:
Proposition 5.26. Let Γ ∈ ∆̂ be a context, A ∈ Ty(Γ), and B ∈ Ty(Γ.A) fibrant
types. Then Π(A,B) is fibrant.

The proof of proposition 5.26 follows the general approach of [9], and is com-
prised of two main steps:

1. Use the universal property of Π-types to reduce the statement to a clo-
sure property of the class of maps that have the left lifting property with
respect to fibrations.

2. Prove the above closure property using the auxiliary notion of strong ho-
motopy equivalence (definition 5.19).

In fact, we can directly prove closure property under pullback along fibrations
for strong homotopy equivalences.
Lemma 5.27. Let Γ ∈ ∆̂,A ∈ Ty(Γ) a fibrant type, and f : Θ→ Γ a strong homotopy
equivalence. Then f+ : Θ.Af → Γ.A is a strong homotopy equivalence.

Proof. Let g : Γ → Θ be the homotopy inverse of f , and h, k the corresponding
homotopies. Consider the lifting problem

Γ.A = //

��

Γ.A

��
Γ.A×∆[1] // Γ×∆[1]

k
// Γ.

The left vertical map is a generalised open prism inclusion induced by 0→ Γ.A,
while the right vertical map is a Kan fibration by assumption. Therefore, there
exists a diagonal lift

k′ : Γ.A×∆[1]→ Γ.A.

Now consider the diagram

Γ.AqΘ.Af (Θ.Af ×∆[1]) //

��

Γ.A×∆[1] k′ // Γ.A

��
ΓqΘ(Θ×∆[1])

[g,h]
// Θ

f
// Γ.
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The definition of k′, together with the fact that g is a homotopy inverse for f ,
imply that this diagram commutes, and therefore the universal property of the
pullback of lemma 3.2 determines a map

Γ.AqΘ.Af (Θ.Af ×∆[1])→ Θ.Af.

In particular, we get a map g′ : Γ.A→ Θ.Af , as well as a homotopy
h′ : Θ.Af ×∆[1]→ Θ.Af.

One can now easily verify that g′ constitutes a strong homotopy inverse of f+ via
the homotopies h′ and k′, and therefore f+ is a strong homotopy equivalence.

To effectively use the notion of strong homotopy equivalence and the closure
property expressed by lemma 5.27, we need some basic examples to start with.
Lemma 5.28. Generalised open prism inclusions are strong homotopy equivalences.

Proof. Fix an arbitrary monomorphism A→ B, and let
i : B qA(A×∆[1])→ B ×∆[1]

be the corresponding generalised open prism inclusion. Denote by ι1 and ι2 the
two canonical inclusions into the pushout B qA(A×∆[1]).
Define a homotopy inverse g as the composition

g : B ×∆[1]→ B → B qA(A×∆[1])

of the projection onto the first component, followed by the canonical inclusion
of the base of the prism. On elements, g is defined by g(b, t) = ι1(b).
Define homotopies h : gi ∼ id and k : ig ∼ id as follows:

h(ι1(b), s) = ι1(b),
h(ι2(a, t), s) = ι2(a, t ∧ s),
k(b, t, s) = (b, t ∧ s).

A simple verification shows that h and k are well defined homotopies as stated,
and that the further condition of definition 5.19 is satisfied.

We are now ready to prove the main result of this section.

Proof of proposition 5.26. It is enough to show that Γ.Π(X,Y ) → Γ has the right
lifting property with respect to all open prism inclusions. Without loss of gen-
erality, we can limit ourselves to lifting problems of the form

A //

i

��

B.Π(X,Y )

��
B =

// B,
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where i is an open prism inclusion. By the universal property of Π-types, it is
enough to find a diagonal lift for the corresponding square

A.Xi //

i+

��

B.X.Y

��
B.X =

// B.X.

By lemma 5.28, i is a strong homotopy equivalence, and lemma 5.27 implies
that the map A.Xi

i+−→ B.X is a strong homotopy equivalence as well. Now,
the map pY : B.X.Y → B.X is a fibration, since Y is a fibrant type. Therefore,
i+ has the left lifting property with respect to pY by lemma 5.20.

5.4 Contractibility and equivalences
By taking the type-theoretic definition of contractibility and translating it into
simplicial sets using the type formers developed above, we get the following:
Definition 5.29. Let Γ ∈ ∆̂. A typeA ∈ Ty(Γ) is said to be contractible if there is
a term c ∈ TmΓ(A) (called its centre of contraction) and a commutative triangle:

Γ.A //

c+ $$

Γ.A.A.EqA

xx
Γ.A.A.

The second condition in definition 5.29 can be expressed by saying that there
exists a homotopy over Γ between cpA and the identity (as maps Γ.A→ Γ.A). In
fact, we can also obtain a characterisation of contractible types purely in terms
of lifting properties.
Proposition 5.30. A type A over Γ is contractible if and only if it has the right lifting
property with respect to monomorphisms.

Proof. Let A be contractible, with centre of contraction c, and homotopy h be-
tween cpA and id. Let f : X → Y be a monomorphism, and consider a lifting
problem

X
u //

f

��

Γ.A
pA

��
Y

v
// Γ.

Define a map `′ : Y → Γ.A as `′ = cv. Now, pA`′ = v, but `′ is not quite a
lift, since the upper triangle does not necessarily commute. However, we can
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consider another lifting problem:

Y qX(X ×∆[1]) //

i

��

Γ.A

��
Y ×∆[1] // Γ,

where i is the 0-oriented generalised open prism inclusion determined by f ,
and the top horizontal map is obtained from c and h. This problem has a liftm,
because p is a fibration, and it is now easy to check that precomposing m with
the map id× (1) : Y → Y ×∆[1] gives a lift for the original problem.
Conversely, assume pA : Γ.A → Γ has the right lifting property with respect to
monomorphisms. In particular, the diagram

0 //

��

Γ.A

��
Γ

id
// Γ.

has a lift c : Γ → Γ.A, and we have found a centre of contraction. The required
homotopy can then be obtained as a lift of the diagram

Γ.A× ∂∆[1]
[cpA,id]//

��

Γ.A

��
Γ.A×∆[1] // Γ.

A map with the right lifting property with respect to all monomorphisms is
called a trivial fibration. Therefore contractible types are those such that their
display map is a trivial fibration.
Lemma 5.31. A map p : Y → X of simplicial sets is a trivial fibration if and only if it
has the right lifting property with respect to boundary inclusions.

Proof. Since boundary inclusions are monomorphisms, one direction is obvi-
ous. Conversely, suppose p has the right lifting property with respect to bound-
ary inclusions, and let i : A→ B be an arbitrary monomorphism. By lemma 5.10
we can decompose i as a colimit of pushouts of coproducts of boundary inclu-
sions. The conclusion then follows immediately from lemma 5.14.

Note that a consequence of lemma 5.31 is that if the display map of a type A is
a trivial fibration, then in particular A is fibrant.
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We are now equipped to understand the type-theoretic notion of equivalence in
terms of the simplicial model. Recall that a function in homotopy type theory is
defined to be an equivalence if its fibres are contractible. A function f : X → Y
between fibrant types over Γ corresponds to a morphism Γ.X → Γ.Y over Γ.
The fibres of f form a fibrant type Ff ∈ Ty(Γ.Y ). Translating the type-theoretic
definition of fibre, we get that Ff = Σ(X,Ef ), where Ef is EqY with its first
argument being substituted by f .
We can fit all these types into a diagram

Γ.Y.Ff
∼= //

pFf

��

Γ.X.Y.Ef //

��

Γ.Y.Y.EqY

��
Γ.X.Y

��

(f,id)
// Γ.Y.Y

Γ.Y,

where the top right square is a pullback, and it follows immediately from propo-
sition 5.30 that f is an equivalence if and only if pFf is a trivial fibration.

5.5 Fibrancy and univalence of the universe
For the purposes of this section, we will say that a simplicial map is a strong
equivalence if it factors as a section of a trivial fibration followed by a trivial fi-
bration. This allows us to determine whether a map is an equivalence before
knowing that its domain is fibrant. In fact, we have the following:
Lemma 5.32. Let Γ ∈ ∆̂, A,B types over Γ, with B fibrant. If f : A→ B is a strong
equivalence over Γ, then A is fibrant, and f is an equivalence.

Proof. Factor f asA i−→ E
p−→ B, where p is a trivial fibration and ihas a retraction

r which is a trivial fibration. Since B is fibrant, so is E. The map Γ.A → Γ is a
retract of Γ.E → Γ, hence it is a fibration.
Now every type is fibrant, and a trivial fibration between fibrant types is an
equivalence. Therefore r and p are equivalences, and so is i. It follows that
f = pi is also an equivalence.

Lemma 5.33. Let Γ ∈ ∆̂,
A //

��

B

f

��
C

g
// D
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a pullback square of types over Γ, with B fibrant, and define A′ as the pullback

A′ //

��

Π(∆[1], D)

��
B × C // D ×D.

Assume that the one of the two canonical maps

Π(∆[1], B)→ Π(∆[1], D)×D B (3)

is a trivial fibration.

Then the canonical map A→ A′ is a strong equivalence.

Proof. We can form a diagram as follows:

E //

��

Π(∆[1], B)

��
A′ //

��

Π(∆[1], B)×D B //

��

B

��
Π(∆[1], D) //

��

D

C // D,

where the top and right squares are pullbacks by definition. It is not hard to
check that the bottom left square is also a pullback. If we now form the pullback
squares

E //

��

Π(∆[1], B)

��
A //

��

B

��
C // D,

the map E → A is a trivial fibration. The map A → A′ factors through E, and
the first factor A → E is a section of the above trivial fibration. The second
factor E → A′ is a pullback of the map (3), hence a trivial fibration. Thus, we
have proved that the map A→ A′ is a strong equivalence.

Proposition 5.34 (Equivalence extension property). Let i : Θ→ Γ be a monomor-
phism,X0 ∈ Ty(Θ), Y1 ∈ Ty(Γ), andα : Θ.X0 → Θ.Y1i an equivalence over Θ. Then
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there exists a type Y0 ∈ Ty(Γ), and an equivalence β : Y0 → Y1, such that the pullback
of β along i is isomorphic to α.

Proof. The following proof is adapted from [10].
Set X1 = Y1i. To define an extension of α : X0 → X1 to the context Γ, we will
make use of the presheaf cwf structure on ∆̂. Since i is a monomorphism, it
has V-small fibres, and therefore there exists a (not necessarily fibrant) type
P ∈ Ty′(Γ) such that Θ ∼= Γ.P . For j = 0, 1, let X̃j = Π(P,Xj), and note that α
induces an equivalence X̃0 → X̃1.
Since X1 = Y1i, there is a map Y1 → X̃1 over Γ corresponding to the identity
X1 → X1 via the universal property of Π-types.
Therefore, we have a map X̃0.Y1 → X̃1.X̃1. Taking pullbacks, we obtain types
Y0 and Y ′0 as follows:

Y0

��

// X̃1

��
Y ′0

��

// Π(∆[1], X̃1)

��
X̃0 × Y1 // X̃1 × X̃1.

Let β : Y0 → Y1 be the composition of the canonical map Y0 → X̃0.Y1 with
the projection to Y1. It follows easily from lemma 5.35 below that the pullback
of β along i is isomorphic to α. It is then enough to show that β is a strong
equivalence.
First note that factoring the map X̃0.Y1 → X̃1.X̃1 through X̃0.X̃1, one obtains
pullback squares

Y ′0 //

��

Ẽ //

��

Π(∆[1], X̃1)

��
X̃0 × Y1 //

��

X̃0 × X̃1 //

��

X̃1 × X̃1

Y1 // X̃1,
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where Ẽ = Π(P,E), and E is defined by the following pullback over Θ:

E //

��

Π(∆[1], X1)

��
X0 ×X1 (α,id)

// X1 ×X1.

Since α is an equivalence, the map E → X0 × X1 → X1 is a trivial fibration.
Lemma 5.36 then implies that Ẽ → X̃1 is a trivial fibration. It follows that the
map Y ′0 → Y1 is a trivial fibration as well.
Now we want to apply lemma 5.33 to the pullback square

Y0 //

��

Y1

��
X̃0 // X̃1,

so we need to check that the induced map Π(∆[1], Y1) → Π(∆[1], X̃1) ×
X̃1

Y1 is a trivial fibration. This follows from an argument similar to the proof
of proposition 5.26, and the fact that Π(∆[1], Y1)→ Y1 is a fibration, since Y1 is
fibrant.
Therefore, lemma 5.33 implies that the map Y0 → Y ′0 is a strong equivalence.
Now β factors as a strong equivalence followed by a trivial fibration, hence it is
a strong equivalence, as claimed.

Lemma 5.35. Let I be a small category, Γ ∈ Î, andP ∈ Ty(Γ) such that Γ.P → Γ is a
monomorphism. Then for all typesX ∈ Ty(Γ.P ), the canonical map ε : Γ.P.Π(P,X)→
Γ.P.X is an isomorphism.

Proof. Note that P is isomorphic to the unit type over the context Γ.P . There-
fore, Π(P,X) ∼= Π(1, X) ∼= X over Γ.P , and stability of Π implies that the
isomorphism is given by ε.

Lemma 5.36. Let Γ ∈ ∆̂, and A ∈ Ty′(Γ) a (not necessarily fibrant) type. Then for
any contractible type B ∈ Ty(Γ), the type Π(A,B) is contractible.

Proof. By an argument similar to the one in the proof of proposition 5.26, it is
enough to show that for all monomomrphisms i : Θ→ Γ, the map i+ : Θ.Ai→
Γ.A has the left lifting property with respect to Γ.A.B → Γ.A. But i+ is the
pullback of i along pA : Γ.A→ Γ, hence it is a monomorphism, and therefore it
has the left lifting property with respect to trivial fibrations.
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In order to express proposition 5.34 as a lifting property, we now introduce a
type that classifies equivalences. In the context U × U , let X,Y be the types
determines by the two canonical projections U ×U → U , and denote by X ≈ Y
the type of equivalences between X and Y . Let Equiv be the corresponding
extended context. Composing the display map with projections gives canonical
maps πi : Equiv → U for i = 0, 1. Note that, by construction, a morphism Γ →
Equiv corresponds to a choice of two types over Γ and an equivalence between
them.
Proposition 5.37. The map Equiv π1−→ U is a trivial fibration.

Proof. A lifting problem for π1 against a monomorphism Θ → Γ corresponds
exactly to the data of proposition 5.34. The existence of the type Y0 and the
equivalence β would imply the existence of a solution for this lifting problem,
except the top triangle only commutes up to isomorphism. This can be resolved
by regarding Y0 as a presheaf over ∆/Γ, and defining a new presheaf Y ′0 that
coincides with X0 on the nose on the subcategory ∆/Θ, and with Y0 outside. It
is clear that Y ′0 is isomorphic to Y0, hence β can be transported to an equivalence
between Y ′0 and Y1, giving an actual lift.

The choice of π1 was important in the proof of proposition 5.34, but once we get
this result for one of the πi, the other easily follows.
Lemma 5.38. The map Equiv π0−→ U is a trivial fibration.

Proof. In the context U × U , there is an obvious equivalence between X0 ≈ X1
and X1 ≈ X0. Therefore, there is an equivalence φ : Equiv→ Equiv such that

Equiv φ //

π0
""

Equiv

π1
||

U

commutes. It follows that π0 is an equivalence. Since it is also a fibration, it is a
trivial fibration.

Corollary 5.39. The simplicial set U is a Kan complex.

Proof. Since the reflexivity map U → Π(∆[1],U) has the left lifting property
with respect to fibrations (the proof of proposition 5.24 applies in this case, even
though we do not yet know thatU is fibrant), we get a lift c : Π(∆[1],U)→ Equiv
in the diagram

U i //

��

Equiv

��
Π(∆[1],U) // U × U ,
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where i is the map that sends a type X to the identity equivalence on X .
Now consider a lifting problem

Λk[n] u //

��

U

��
∆[n]

v
// 1.

Recall from the proof of proposition 5.16 that horn inclusions are retracts of
generalised open prism inclusions, so we have a diagram

Λk[n] f //

��

∆[n]qΛk[n](Λk[n]×∆[1]) g //

��

Λk[n]

��
∆[n]

f
// ∆[n]×∆[1]

g
// ∆[n],

where the top and bottom horizontal arrows compose to identities. We will
assume that the generalised open prism inclusion is 0-oriented, the other case
being completely analogous. Let w1 : Λk[n] → Π(∆[1],U) and w2 : ∆[n] → U
the maps obtained from the two components of ug via the universal property
of Π types. We can reassemble this data into a new lifting problem:

Λk[n] w1 //

��

Π(∆[1],U) c // Equiv

π0

��
∆[n]

w2
// U ,

which we know has a solution ` : ∆[n]→ Equiv, because π1 is a trivial fibration
(hence in particular a fibration). One can now easily check that π0`f is a lift for
the original problem.

Remark 5.40. Assuming the existence of a further Grothendieck universeV ′ con-
tained in V , we can repeat the construction of U using V ′ instead of V , obtain-
ing a smaller universe U ′ for the simplicial model. Since now U ′ is a V-small
presheaf, and a fibrant type by corollary 5.39, it satisfies the definition of a small
universe, which means that it can be used to interpret a type theory with a uni-
verse type former.
We conclude our construction with a result summarising what we have achieved.
Theorem 5.41. The cwf structure of fibrant types on simplicial sets admits Σ, Π and
intensional equality type structures, as well as a small univalent universe.

Proof. We constructed Σ-types in section 5.3.2, Π-types in section 5.3.5, inten-
sional equality types in section 5.3.4. Corollary 5.39 proves that the universe
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U constructed in section 5.2 is fibrant, and hence can be thought of as a fibrant
type (modulo size issues as explained in remark 5.40), and hence as a small
universe.
It remains to observe that proposition 5.37 translates to one of the equivalent
type-theoretic formulations of univalence. ThereforeU is univalent, completing
the construction.
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